
Matching of electronic wavefunctions and envelope functions at GaAs/AlAs interfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 2587

(http://iopscience.iop.org/0953-8984/4/10/021)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 12/05/2010 at 11:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/10
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 4 (1992) 2587-2606. Printed in the UK 

Matching of electronic wavefunctions and envelope 
functions at GaAs/AlAs interfaces 

J P Cuypers and W van Haeringen 
Eindhoven University of Tedmolopv, Department of Physics. PO Box 513, 5600 MB 
Eindhoven, The Nethersnds 
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Abstract. A method to calculate electronic wavefunctions and energies in AlGaAs 
heterostmct- is dewloped and applied to some typical mnfigwations. The method 
is based on the use of empirical peudopotentials and the applicability of the flat-band 
approximation. Coupling of r- and X-like conduction-band electrons is explicitly 
dealt with. Emphasis is put on the precise matching of wavefunctions at interfaces 
85 well as on the connection d e s  for the related envelope functions. Among other 
things, we do not find evidence for boundary conditions for derivatives of envelope 
functions involving effective m a s  ratios. 

1. Introduction 

There is great interest in theoretical calculations on electronic states in heterostruc- 
tures. The most rigorous approach is to  use self-consistent supercell calculations (Van 
de Walle and Martin 1987, Baldereschi et a/ 1988, Picket e t  a /  1978). These calcula- 
tions, however, are restricted to superlattices with relatively small width layers only. 
Moreover, the emphasis in such kind of calculations is on ground state properties. If 
we are interested in conduction-band state wavefunctions and energies, say, it is more 
appropriate to  use less rigorous methods. One of the objectives of this paper is to 
perform calculations of electronic wavefunctions in the particular class of heterostrnc- 
tures composed of Al,Gal-,As layers. In doing so, we base ourselves on (complex) 
bandstructures and wavefunctions (Heine 1963) for tho respective sublayer materi- 
als, t o  be obtained within the empirical pseudopotential method (EPM) (Cohen and 
Bergstresser 1966, Baldereschi et a /  1977). Matching at interfaces of wavefunctions 
is achieved by demanding continuity of a sufficient number of z-dependent ( z  denotes 
the direction perpendicular to the interface) twc-dimensional (zD) Fourier coefficients 
of the entire wavefunction as well as continuity of their derivatives with respect to  
z.  Our approach, which shows both similarities and differences with the approach of 
e.g. Marsh and Inkson (1986), KO and Inkson (1988), Edwards and Inkson (1990) and 
Brand and Hughes (1987), will be illustrated for the cases of one and two interfaces, 
but can easily be extended to more interfaces. A second objective is to actually con- 
struct, from the above EPM obtained wavefunctions in the heterostructure, the related 
envelope functions, according to the Luttinger-Kohn definition (Liittinger and Kohn 
1955). This construction of the actual envelope functions enables us to determine 
what kind of boundary conditions these functions apparently have to fulfill. These 
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can then subsequently be compared with connection prescriptions as used in the lit- 
erature, (e.g. Altarelli 1983, Ando et a i  1989, Bastard 1981, Burt 1989, Eppenga et  al 
1985, Hurkx and van Haeringen 1985, Potz and Ferry 1987, Schuurmans and 't Hooft 
1985, Smith and Mailhiot 1986). 

The paper is organized as follows. Section 2 deals with the empirical pseudopc- 
tential method for calculating electronic states in heterostructures, in the framework 
of the flat band approximation (FBA) which is introduced in section 2.1. Complex 
bandstructures are discussed in section 2.2, while boundary conditions are formu- 
lated in section 2.3. The method of constructing envelope functions is described in 
section 3. Section 4 is devoted to the scattering of electrons at a single GaAs/AlAs in- 
terface. Scattering coefficients belonging to various channels are explicitly calculated 
as a function of energy. Section 4.2 is more specifically devoted to the connection 
rules for envelope functions which can be deduced from this treatment of the elec- 
tron scattering problem. Section 5 deals with the tunnelling of electrons through a 
GaAs/Al,Ga,-,As/GaAs barrier structure, and compares obtained EPM results with 
results obtained from models in which envelope functions ace used which are assumed 
to fulfil simplified connection rules. It appears, among other things, that for energies 
above the X-minimum in the conduction band of AIAs, the r-band electrons tunnel 
resonantly through the X-valley quantum well in AlAs. Both the results of our method 
to obtain the true electronic wavefunctions as well as our findings concerning the con- 
nection rules for envelope functions are summarized in section 6. An important result 
is that no evidence is found for a connection rule for derivatives of envelope functions 
involving effective mass ratios. 

J P Cuypers  and W van Hueringen 

2. Empirical pseudopotential method for lattice matched heterostructures 

In this section we will give an outline of a method to obtain electronic wavefunctions 
in a lattice matched heterostructure. The method is based on the use of empirical 
pseudopotentials and is highly similar to the one used by Brand and Hughes (1987) 
and by Marsh and Inkson (1986), although there are notable differences in numerical 
implementation. The section will be subdivided into three parts, the first of which 
will be concerned with the introduction of the flat-band approximation. The second 
will be devoted to the calculation of complex bandstructures and the corresponding 
eigenfunctions. The third section deals with the boundary conditions, and their role 
in determining the scattering characteristics of electrons at a single interface as well 
as at barriers (wells) consisting of two or more interfaces. 

2. I .  Fiat- band appmximation 

Although the flat-band approximation (FBA) is a very common ansatr in calculations 
of electronic states in heterostructures, we consider it necessary to state precisely 
what we mean by it. As is well known from self-consistent supercell calculations (Van 
de Walle and Martin 1987, Pickett et a/ 1978, Baldereschi et al 1988), the full self- 
consistent potential in a sublayer of a lattice matched heterostructure is identical to 
the bulk-potential of the corresponding material, except at distances in the direct 
neighbourhood of the interface. In figure 1 we have plotted the most important 2D 
Fourier coefficients of the difference between the self-consistent heterostructure pc- 
tential and the self-consistent bulk-potential of the involved sublayer material for a 
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GaAs/AIAs supercell along the [OOl] direction. These results were obtained by ab in& 
tio self-consistent supercell calculations, using norm-conserving pseudopotentials and 
the LDA approximation, performed by Van de Walle and Martin (1987). As can be 
seen in figure 1, the difference potentials are only appreciably non-zero within one 
monolayer thickness from the interface. We define the FBA by approximating the pcr 
tential in a heterostructure layer by means of the potential of the corresponding perfect 
bulk-material, and by using experimentally or theoretically obtained band offset pa- 
rameters in order to position the energy bands of neighbouring sublayers. According 
to  figure 1 this approximation neglects the effects of small regions near the interfaces. 
Note, however, that the strength of the neglected difference potential near the inter- 
face may be appreciable and e.g. comparable to the valence band offset. Whether this 
may invalidate FBA obtained results has to be the subject of further study. 

eV 

0.20 

0.10 

-0.00 

-0.10 

-0.20 

- G=W) 

G=(0,1) 

G=(0,2) . . . . . . . 

Ga As AI As AI As Ga 

z (along [OOl]) 

Figure 1. DiRaence potential Fourier coefficient U,(*) along [OOl] between &he 1- 
tal seU-consistent potential of a GaAs/AIAsbd superlattice and the correspond- 
ing bulk potential (GaAs in regiom I and 111, AlAs in region 11) obtained by self- 
consistent ab initio pseudopotential calculations (Van de W d e  and Martin 1987) for 
G = (0 ,O)  (solid curve), 0 = (0,l)  (dashed curve), and G = (0,Z) (dotted curve), 
where G = (0,l) are baris vectors of the two-dimensional reciprod lattice. The 
location of the interfaces is chosen at the As-planes such that the strength of the 
Ua(r)-potentials is as small m possible. 'Ihe Ua(z)-potentials are zero (except for 
small fluctuations due to numerical noise) except within one monolayer thidiness of 
the interfaces. The amplitudes are however comparable with e.g. the valence band 
offset AEv D 0.4 eV. 

We propose to choose the position zo of the interface in the FBA scheme by means 
of the criterion J AVG=,(% - z,)dz = 0 , where AV is the above mentioned difference 
potential, We observe from figure 1 that io almost precisely coincides with the As- 
plane for the case of a GaAs/AIAs [OOl] interface. 

2.2. Calculation of complex bandstructures 

In FBA we now use the following procedure. For each material layer j the SchrXnger 
equation is solved for the infinite perfect bulk-crystal of material j at given energy 
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E and parallel wavevector qll. The general solution in each layer is then a linear 
combination of all possible solutions at that energy and qll. Boundary conditions at all 
interfaces and at z = =$zoo will then fix the solution valid for the entire heterostructure. 

We start with the one-electron Schrljdinger equation for a bulk-crystal of material 
j ( h  = 1 ,m = +) 

J P Cugpers and W vun h'aeringen 

[-Vz + V'(T) + LI{]qbj(r) = Eqbj(r) (1) 

where V J ( r )  is a local empirical pseudopotential, reproducing the bandstructure of 
material j to reasonable accuracy. Note that we added an unknown constant Cl; in 
equation (1) for each material j .  These constants have to account for the valence 
band offset parameters between the respective material layers. We neglect spin-orbit 
interaction for the sake of simplicity, but this can easily be added if necessary. Since 
V'( r )  is periodic in three dimensions, solutions of equation (I), at given E and q,, ,  
can be written as the generalized Bloch functions (Mott and Jones 1936) 

( 2 )  IIJ(,.) = eik' rUj(,.) = e l g ~ ~  p,it:. j U ( r )  

where @ is either real or complex. Expanding the uj(r)-functions in plane waves e'" ', 
K being reciprocal lattice vectors. we obtain a matrix equation for ki. If N plane 
waves are used there are 2N solutions (which will be labelled with index 8 ) .  However, 
only the in-zone solutions should be retained, the number of which equals 2 M ,  where 
M is the number of projected reciprocal lattice vectors G, with K = G + GIe, 
(the proof is given in appendix A). The general wavefunction solution in each layer j 
can now be written as a linear combination of all possible Bloch-type solutions with 
different kit' 

where @,5(r)  is given by equation (2). The coefficients d +  have to be fixed by the 
boundary conditions. 

2.3. Boundary condifions 

We will now formulate the boundary conditions at an interface which will be expressed 
in terms of an S-matrix, describing the scattering of an electron at a single interface. 
In addition the boundary conditions at the two interfaces of a single barrier or QW 
structure will be formdated in such a way, that a numerical stable solution can easily 
be obtained. 

Using translational symmetry in the z-, y-directions we write 

$3 = ,i(nii+G) P J ; ( ~ )  
G 

where p = (2, y) and according to (3) and (2) 

(4) 

(5) 
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the d$(z)-functions being the ZD Fourier coefficients of the d,'(r)-functions in equa- 
tion (2), 

The boundary conditions follow from demanding &z) and its first derivative to 
be continuous at the interface (located at zo) for all G 

and 

Equations (8) and (9) constitute 2M equations ( M  Gvectors) which, together with 
2M conditions at z = fm,  fix all constants d*' in their respective layers. It is 
convenient to write (8) and (9) in matrix notation 

Dj(zo)d = D'+'(zo)dt'. ( 10) 

The Dj(zo)-matrices are 2 M  x 2M matrices, the elements of which follow in an obvious 
way from equations (8) and (9). In order to obtain an S-matrix description we first 
rewrite (10) in the form 

where the right (left) arrow stands for Bloch/evanescent waves which travel/decay to 
the right (left). The Djt-(zo) and Djs+(zo) are 2M x .M matrices. We subsequently 
rewrite (11) as 

(12) 

where all outgoing channels (transmitted and reflected) are placed at the LHS, and all 
incident channels at the RHS, so 

D o u t ( ~ o ) ~ o U t  = Din(zo)ain , (13) 

The S-matrix is now defined as 

&out = sa'" 
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with 

J P Cuypers and W v a n  Haeringen 

S = ( D O U t ) - ' D i "  

We may choose one incoming channel (for instance an incoming electron) correspond- 
ing to an ai" vector with zero components except for one &-coefficient (correspond- 
ing to the incoming electron) which is equal to 1. The outgoing channels are then 
given by a row of the S-matrix. 

In dealing with the situation with two interfaces, separated by a distance U', we 
have to take special care to avoid numerical problems. As has already been reported by 
Brand and Hughes (1987), and KO and Inkson (1988), evanescent waves, corresponding 
to complex k,-values with large imaginary parts may, even for relatively small barriers, 
lead to numerical problems. This problem is solved by applying either a numerical 
truncation scheme (Brand and Hughes) or a scattering matrix approach (KO and 
Inkson). In this paper we present an alternative approach, also based on scattering 
matrices. 

The tunnelling of an electron through a barrier is in fact the subsequent scattering 
of an electron at two interfaces. We therefore have to deal with incoming and outgoing 
channels at each interface again. In order to avoid manipulation with large numbers, 
we consider the waves in the barrier which are travelling/decaying to the right as out- 
going from the first interface (coming from the left), and waves travelling/decaying to 
the left as outgoing from the second interface. Their amplitudes at the other interface 
are then either of similar magnitude (travelling waves) or are smaller (decaying waves). 
If the two interface positions are at zo and z,, + W ,  then we suppress the occurrence 
of large numbers by alternately choosing the zero of the z-axis at zo or z,, + W, which 
leads to the following boundary conditions at the first interface 

Dj,+(o)aj.- + Dj,-(0)ait- = DjtL-(0)ajtL- + gjtl,-(-w)&L- (16) 

and at the second interface 

Djt1,-  ( w ) a j t L -  + Djtl,-(0)ajtl+- = ~ j t ' L - ( o ) ~ j + X -  + ~ j t % - ( q ~ j t Z , - ,  

(17) 

We rewrite this as 

(DJ,;(o) -Dj tL-  (0) -Dj+'*-(-W) 
- ~ j + L - ( q  -DjtL-(o) Dj+Z-(o) 

or 

(19) DO$ta?$Ut = Oga$ 

where DYt is a 4M x 4M matrix, and D!,? is a 4M x 2M matrix. The scattering 
matrix for a tunnelling problem is again defined as in equation (14), so 

s, = (D?$U~)-'D;?. (20) 
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The S-matrix for the tunnelling problem is now a 4M x 2M matrix, since the dtl*+- 
and &'.*-coefficients in the barrier, as well as all coefficients of the reflected and 
transmitted channels are related to the incoming vector ai". The matrix elements of 
DYt are either of order unity, exponentially small, or zero. Furthermore, there are 
always matrix elements of order unity on every row or column of DYt ,  implying that 
inversion of DFt does not give numerical problem (except at singularities of the S- 
matrix as discussed below). The fact that some matrix elements become exponentially 
small is just  a manifestation of the vanishing contribution of an evanescent wave to 
the matching of the wavefunction at an opposite interface. 

Instead of performing the full inversion procedure required for the calculation of 
the full S-matrix (equation (20)) one may alternatively choose a procedure in which 
the elements of the &+'-vector in equation (19) are chosen to be all zero, except for 
one particular incoming wave. It is then numerically easy to solve the set of linear 
equations given by equation (19), which gives a row of the S-matrix. 

The above sketched method can also be adopted to treat the QW problem. The 
incoming channel then corresponds to an evanescent wave decaying towards an inter- 
face. Bound states are obtained at energies for which det(DFt) = 0 or, alternatively, 
for which det(ST) has a pole. 

3. Envelope functions 

Envelope function approaches, as used in the literature all have in common that the 
envelopes are supposed to fulfil some specific set of equations, together with certain 
boundary conditions at interfaces. It is not always obvious how reliable either of these 
are. 

What we, in OUT analysis at least, can do is the following. From the ezact treatment 
of scattering (based on empirical pseudopotentials) given previously, we can derive 
what the related envelope functions are, simply by rewriting our former results in 
t e r m  of envelope functions. We are then left with envelope functions which are what 
they ought to be. We are thus in the position to verify whether proposed boundary 
conditions for envelope functions at interfaces are valid or should be replaced by more 
appropriate ones. 

The envelope functions are introduced as follows (Liittinger and Kohn 1955): a 
Bloch-type solution at given energy and ql, is written as 

,p(,.) = eit'" ruj,*(,.) = e itj,' v ~,$.j,,,(,.) = ei(t'"-ta) I C6..*&to(,.) 
n " 

= CF,4sd(r)&O(T) (21) 
" 

where kj,' = q + kFez and II 

(22) it. r j vL&-) = e  U"t&-) 

is an eigenfunction of the Schrodinger (I)  at a fixed point k, in the first Brillouin-zone. 
k, is most conveniently chosen to be at an extremum of the bandstructure, like the 
r-point or the X-point. If we restrict ourselves to qll-values and interfaces such that 
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(see Cuypers and van Haeringen 1991) the envelope functions F$'(r), have only one 
overall factor e'qll p,  equation (21) becomes 

J P Cuypers and CV wan Haeringen 

where we have taken kOll = 0. Note that f,$'(z) is in fact equal to $eiki''z (see 
equation (21)), in which the follow from projecting d + ( r )  onto the functions 
uiro(r). The general wavefunction in a heterostructure layer (3) can now be written 
as 

with 

It should be realized that the index n runs from 1 to N,  N being the number of energy 
bands taken into account in our empirical pseudopotential scheme. On the other 
hand, the number of band-indexed envelope functions taken into account in practical 
applications of the envelope-function formalism is much lower, and may vary between 
1 and 4 (or 8 if spin states are explicitly dealt with). This reduction is generally 
justified by the application of a Lowdin renormalization procedure (L6wdin 1951), in 
which it is assumed, among other things, that only a few of the n-dependent terms in 
(24) significantly contribute to ( / J ( r ) .  In such procedures the boundary conditions for 
envelope functions and their first derivative at z = zo are most generally expressed in 
terms of a transfer matrix T 

where Fj now stands for a vector with a few components 3 i ( z 0 )  only. Typically, 
for states in the energy region of the conduction-band minimum one such component 
could be sufficient. For hole-like states we have at least to include heavy- and light- 
hole bands. Our approach will be to derive the proper electronic wavefunction for a 
heterostructure first (as sketched in the previous section), after which we write the 
obtained solutions in terms of the above introduced envelope functions. We can then 
check whether or not proposals for the T-matrix given in the literature do satisfy 
relation (26), in which we substitute the envelope functions as obtained from our 
calculations. 

Although relation (25), based on envelope functions around one k, only, is formally 
correct, one might argue that it may not always be equally useful in heterostructures 
because of the fact that equation (25) generally contains terms corresponding to k,- 
values which have a real part not only close to k, = 0 (the r-extremum) but close 
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to k, = %ez (the X-extremum) as well. A successful and simple envelope-function 
theory has always to be combined with Lowdin perturbation theory around a partic- 
ular extremum. Therefore, dealing more generally with both I? and X related terms 
in equation (25), which may be necessary if the energy is close to the energy a t  an 
X-extremum, it s e e m  natural to separate the summation into equation (24) into two 
parts 

+j(r) = Cn""+(r) + C$+#J(T) r X 

where the I'/X index means restriction to solutions corresponding to k,-values which 
have a real part close to k, = (O,O, 0) or kx = (O,O, %). The boundary conditions 
for such envelope functions and their first derivatives are then expressed as 

It is not obvious whether equation (26) is the most suitable or equation (28). Especially 
when X-related fc(r)-functions in equation (25) are expected to play an important 
role, as for energies close to the conduction band minimum at the X-point, the latter 
may be more appropriate. This matter is considered in more detail in section 4.2. 

4. Scattering at a single GaAs/AlAs interface 

In this section we report on scattering calculations for a single GaAs/AlAs interface. 
Apart from calculating amplitudes for outgoing channels we also derive the related 
envelope functions and discuss their apparent connection rules. 

4.1. Empirical pseudopotential calculations 

The complex bandstructures of the materials GaAs and AlAs have been calculated us- 
ing the same procedure as Chang and Schulman (1982), and using the pseudopotential 
form-factors as given by Baldereshi et a1 (1977). The constants U{ in (1) are taken 
such that the valence band offset is equal to 35% of the difference in the bandgap of 
material j and j + 1. We have used 59 plane waves in our calculation leading to 42 
k,-solutions (A4 = 21). In figure 2 we have plotted the positive value of the real and 
imaginary parts of these k,-solutions as a function of energy, for q,, = 0. In order to 
follow the branches with a real part in the vicinity of the X-point continuously as a 
function of energy, the 1BZ in the k,-direction is chosen to  lie between 5 and z.  

For the incident wave we have chosen the channel in GaAs, corresponding to a 
light-hole for energies in the valence band regime, and an electron for energies in the 
conduction band regime. In the energy gap of GaAs we choose as the incoming channel 
the evanescent state corresponding to the branch connecting the light-hole band with 
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0 5 )  

I 

Figure 2. Complex bandstructuw of GaAs and AlAs at 911 = 0. The zem of 
energy mrresponds to lhe conduction-band minimum of GaAs. The positive real 
part of lhe k,-vdues is plotled at the right of the zero axis, the positive imaginary 
part is plotted at the left of the zero axis. Purely real k.-values are denoted by 
solid curves, purely imaginary k,-vdues by broken ~ M S ,  and complex k.-values by 
dotted curves. The complex k,-values which haw a real part slightly deviating frocm 
2 n f a  correspond to the branches whid, are connected to the X-minima of the firs1 
and second conduction-band. 

the conduction band. In a heterostructure with a single interface this channel would 
of course be prohibited, as it is evanescent towards the interface, but in configurations 
with multiple interfaces it may be allowed. In order to obtain an impression of the 
relevance of the 21 outgoing channels in GaAs as well as the 21 for AlAs we have 
plotted in figure 3 the maximum values which each of the 42 oy'-coefficients assume 
in the considered energy interval. The actual ay'-values at one given energy may of 
course be quite different from those in figure 3, but as intuitively expected, the reflected 
and transmitted light-hole/electron are most important, but also the heavy-holes and, 
to a lesser extent, the solutions with a real part of kz close to the X-point may play a 
significant role. Also, certain evanescent states (for instance channel 7) are not entirely 
negligible. The absolute values of the most important &'-coefficients are plotted as 
a function of energy in figures 4-6. The most striking features are the resonances of 
the light-hole and heavy-hole or'+-coefficients at energies just above the valence-band 
edges of AlAs and GaAs. We explain these resonances as the tendency of the system 
to form an interface state. Such an interfacestate would exist if the determinant of the 
matrix Do"' (see equation (13)) were zero. At  the resonant energies, the absolute value 
of this determinant, which is plotted in figure 7, shows sharp dips, indicating that there 
is an almost perfect match of the wavefunction consisting of outgoing channels only. 
The effects of the electrostatic potential connected with such interface states have not 
been accounted for in our calculations. Furthermore, the locations of the resonances 
are at the valence-band edges of AlAs and GaAs, for which the effects of the spin-orbit 
interaction are important. A calculation incorporating both the electrostatic potential 
and spin-orbit interaction would therefore be necessary to study these resonances in 
full detail. 
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0 

I 

GaAS 

AlAs 

1 3 5 7 9 11 13 15 17 19 21 

channel numbers 

Figure 3. The maximum of the absolute value of the &*-coefficients of each outgoing 
b e l  s in the energy range -2.5 eV to 0.5 eV, for the case of m incoming tight- 
holefelectron. The use of 59 plane waves in the calculation gives rise to 21 outgoing 
channels in material layer. The channel number s = 1 corresponds to the 
reEeetedftransmitted light-holefeleetron states. The numbers 8 = 2 and s = 3 
correspond to the twofold degenerate heavy-hole states. The channel numb- above 
s = 11 correspond to k,-values with a real part close to 2rfa.  The numbers 3 = 12 
and s = 13 correspond to branches which -er m m  8pedeally, connected to the 
X-minima of the first and second conduction-band, respectively. 

- GaAs 

MAS ... 

-2.0 -1.5 -1.0 -0.5 0.0 0.5 

Energy (ev) 
Figure 4. The absolute value of the o?'-coeffidents corresponding to the Aected 
light-holefelectron in GsAs (solid curve) and the transmitted light-holefelectron in 
AlAe (broken curve) as a function of energy. The sharp peds occur just above the 
valence band edges of GaAs and AlAs, respectively. 
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2 

n 
-2.0 -1.5 -1.0 -0.5 0.0 0.5 

Energy (W 
Figure 5. The s m e  M in figurr 4, but now for the heavy holes in GaAs and AIAs, 
which are twofold degencrate at qll = 0. 

0.20 

0.10 

0.00 
.20 -1.5 -1.0 -0.5 0.0 0.5 

Energy ( e 9  

Figure 6 .  The same lls in figure 4, but now for the complex kz-branches which 
are connected to the X-minimum of the first conduction band ( X I )  and the second 
conduction band (X3) of GaAs and AIAs. 

As can be seen in figure 6, the solutions associated with the X-point are not 
negligible, especially in the important conduction-band regime. They may constitute 
about 10-20% of the total wavefunction at the interface. Aowever, if one is interested 
in charge densities or fluxes carried by these states (for energies above the X-minimum) 
their importance is only minor, since the charge density and flux are proportional to 
ldblz, which is about 1 4 %  of the total charge or flux. This is not to say that the 
incorporation of X-states in the theory is unnecessary, as they may play an important 
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-2.0 -1.5 -1.0 -0.5 0.0 0.5 

Energy (eV) 

Figure 7. The ahsolute value of the determinant of the matrix DO”’ ( a n  qua. 
tion (19)). The aharp dips are positioned at the same energies as the peaks in 
ligure 4. A zem in the determinant is likely to correspond with an interface state. 

role in the matching at an interface, by fixing the actual values of the coefficients aJS 

for r-states, say. 

4.2. Connection rules f o r  envelope functions 

Having calculated the d,’-coefficients, we are now able to calculate the envelope 
functions Fj(z), using equation (25). We will focus on the energy region above the 
r conduction band minimum in GaAs. At these energies the most important d*’- 
coefficients, for the case of an incident r-electron, are the ones which correspond to 
the transmitted and reflected r-electron, the absolute values of which are given in 
figure 4. The most dominant functions f F ( z ) ,  belonging to these &,*-coefficients, 
are the ones with the band index n = c of the conduction band, since their ki*’- 
values are close to the conduction band minimum at the r-point of GaAs and AIAs, 
although we find from our calculations that these functions are also significant for the 
light-hole valence band (n  = Ih). We will therefore consider the T-matrix connecting 
the conduction and light-hole band envelope functions F i ( z )  and F/,,(z) in GaAs and 
AIAs, which then obviously reduces to a 4 x 4 matrix (see equation (26)). We remark 
that most, if not all, connection prescriptions in the literature for electron states in 
the considered energy region are formulated in terms of a diagonal 2 x 2 T-matrix, 
connecting the Fc(r)-functions only. Our calculations enable us to determine the 
actual values of any of these diagonal T-matrix elements as functions of energy. In 
figure 8 the T-matrix elements ’i”,, and Tih,lh, connecting the Fe and FLh-functions, 
are given as functions of energy (note that T,, and Tih,l,, can be chosen to be real). 
A striking feature is that 1 < T,, < 1.004, and 0.995 < Th,ih < 1.003 for a relatively 
large energy interval (0.5 eV) above the r-conduction band minimum in GaAs. This 
implies that the envelope function F J z )  as well as F,,,(z) can indeed be considered to 
be almost perfectly continuous at an interface, which supports the connection rule for 
the conduction-band envelope function as is often used in the literature. We remark 
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Figure 8 .  Absolute value of the diagonal elements of the transfer matrix T, relating 
envelope functions and their first derivatives at the two sides of an interface. Accent. 
at band indices denote transfer matrix elements between the first derivatives of the 
envelope functions. 

that the small deviations of T,, and Tlh,Jh from 1 are not due to numerical inaccuracies. 
The absolute values of the T,,,, and T,ht,lhl-matrix elements, being the elements 

relating the first derivatives of the envelope functions F,(z) and F J h ( z )  at an interface, 
are also plotted in figure 8. What is again striking is that the first derivative of the 
envelope function Fc(z)  is approximately continuous as well. The deviations of T,,,, 
from unity are within 10-15%. However, this is in contradiction with the often applied 
rule that T,,,, = m;+,/m; which would be equal to about 3 for a GaAs/AIAs-based 
heterostructure! The T,h,,,k,-matrix element, in contrast to T,,,,, is fat from being 
constant in this energy range, implying that aFJh/az is not at all continuous at the 
interface. On the contrary, its mismatch in continuity is rather strongly dependent on 
energy. It is worthwhile to re-emphasize that we did not assume the basis functions 
rLio(r) (see equation (21)) to be identical for both materials, as is a common ansalr in 
the literature, but have taken the exact eigenfunctions of the Schrodinger equation (1) 
at k, = 0 for each material. We again stress that the envelope functions which have 
been used to obtain the T-matrix elements are the exact ones, and are not obtained 
from an approximate set of Lijwdin renormalized envelope-function equations. Note 
in this connection that the envelope functions we are considering contain all 2M terms 
as given by equation (25). 

The envelope function Fi considered above, is composed of a variety of f p ( z ) -  
functions ( 2 M  in total), including the functions which are related to ki"-valucs which 
have a real part close to the X-point. (Similarly F/h is composed of a variety of 
f/,f(z)-functions.) As we have observed in figure 6, the belonging to such X- 
related solutions are relatively small. However, in considering 8 3 i / a z  we have to 
realize that afC/az-values related to kj,a'-values close to the X-point may be much 
more important than those related to ki*a-values close to the r-point, as they con- 
tribute proportionally to k?$+ instead of aJ*'. This implies that the contribution to 
aF;/az of X-related afj~a/az-€unctions may very well be of equal importance as the 
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contribution of the r-related &'fi~'/dz-functions. In addition, if the real part of @ 
is close to X, we have to face the fact that the related fk*-functions are significant 
for a relatively large set of %values. This is due to the Luttinger-Kobu procedure 
in which $y(r)-functions are expanded in terms of 4,ko(r)-functions with ko = 0 
(equation (21)). In order to avoid too many n-values playing a significant role, it 
might he more convenient to separate the summation over the 2M terms in (25) into 
two parts as in equation (27). In that way envelope-function expansions of @'(r)- 
functions with k, close to  koa = % require only a few band indices, and the first 
derivatives of fP(r)-functions corresponding to  these solutions become proportional 
to (ka - k O 2 ) 8 ~ ' .  For the most important &-coefficients, corresponding to solutions 
with ki+-values close to the X-minimum of the conduction band, for which the ab- 
solute values are given in figure 6, the f2-function with the conduction band index 
n = c will again be the dominating one, although also the second conduction band 
n = e, may play a comparable role. 

Whether this separation in r- and X-related envelope functions will then lead to 
more transparent envelope-function descriptions remains of course to be proven, but 
we are again in the position to verify what the connection rules for such separated 
envelope functions actually are. To this end we have carried through the above de- 
scribed separation in r- and X-related fc(z)-functions (see equation (27)) and have 
actually calculated the above introduced FL(z),  for n = c and n = Ih, and F z ( z ) ,  
for n = c and n = c,. The Trsx matrix connecting the FFsx, FK and Fz-envelope 
functions and their first derivatives becomes an 8 x 8 matrix. For the moment we 
are especially interested in the effect of the separation in r- and X-related terms on 
the connection rules for the remaining r-related envelope functions Ff and FK. The 
newly defined Tln-matrix elements for n = c and n = lh,  connecting Ff and F;, 
as well as the absolute value of the Ts,,,-matrix elements for n = c and n = lh, 
connecting the first derivatives of Ff and F;, are given as a function of energy in 
figure 9. These matrix elements are again approximately constant and nearly equal 
to 1, with 0.945 < T: < 0.956 and 0.969 < < 0.986. So again, both the Ff and 
Fz-envelope functions are approximately continuous at the interface, although this 
approximation is somewhat worse than it is for the unseparated envelope functions. 
The first derivative of Ff is again approximately continuous at the interface, with 
[T,,c, l  = 1.26 f 0.10. The value of is still far from the ratio of the effective 
masses of AlAs and GaAs, so the separation in r- and X-related terms does not re- 
move the discrepancy between our results and the m;+Jm;-rule for connecting the 
first derivative of the conduction-band envelope function. The absolute value of the 
T,i,,lh,-matrix element has a very strong dependence on the energy. There is no im- 
provement on the case in which we did not perform a separation in I?- and X-related 
terms. On the contrary, the value of lT~,, lh,l  varies as much as two decades in the en- 
ergy interval under consideration. There is, therefore, apparently no simple connection 
rule for the a3,,,/az-function in this energy range. 

The Tx-matrix elements for n = c and n = c, appear to have no  simple dependence 
on energy. The problem concerning the connection of X-related envelope functions at 
interfaces will be addressed in a future paper. 

5. Applicat ion to a GaAs/AlAs/GaAs single barrier structure 

Having dealt with the case of a heterostructure with one interface only, we are now 
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Figure 9. The same = figure 8, but now for r-related envelope functions (see main 
text). 

ready to deal with a heterostructure consisting of three material layers, separated by 
two interfaces. We will use the method as developed in section 2,  based on empir- 
ical pseudopotentials. We also will use an envelope function approach, in which we 
will apply some of the results of the previous section with respect to the boundary 
conditions for the envelope functions and their first derivatives. 

We consider a GaAs/AI,Ga,-,As/GaAs single barrier structure, with x = 1 
and I = 0.3. Although, in principle, we are also capable of dealing with the 
Al,Ga,-,As/GaAs/Al,Ga,_,As quantum well problem, we will not do so, for we 
have not yet incorporated spin-orbit interaction which is of importance for the hole- 
bound states. The I = 1 case is particularly interesting, since AlAs is an indirect 
semiconductor. The situation is such that the AlAs layer acts as a barrier for r- 
electrons, whereas the X-electrons see the AlAs layer as if it were a potential well. 
At the interfaee there will be a coupling between r- and X-electrons, as we have seen 
in section 4.1, so the X-valley assisted transmission of a r-electron through the AlAs 
layer may play an important role. In this view, it is important that  the bandstructure 
around the X-point is calculated accurately We therefore calculate the complex band- 
structure around the r-point and X-point separately, using sets of reciprocal lattice 
vectors, which lie in shells around the r- and X-point, respectively. The position of the 
conduction band minimum at the X-point with respect to the rmnimum at the r-point 
is taken from experimentally obtained values (Casey and Panish 1978). All other p" 
rameters are the same as those given in section 2. We consider a tunnelling structure 
with a barrier thickness of 20 monolayers which is equal to 56.6 A. Corresponding to 
the 27/3>plane wave basis set, there are 13 G-vectors, which lead to  26 k,-solutions 
which are taken into account. However, in dealing with the connection problems a t  
the two interfaces (see section 2) we have the option of reducing the number S of 
k,-solutions to be taken into account by simultanuously reducing the number M' of 
Gvectors,  such that S = 2M'. Since the Gvectors are arranged in shells, it is quite 
natural to choose the number M' to be equal to 13 (i.e. taking them all into amount) 
or equal to the reduced values 9, 5 or 1,  respectively. For these four values of M' 
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we have calculated, for an incoming r-electron, the amplitude of the Bloch-function, 
corresponding to the transmitted r-electron (which we denote by a,). Note that for 
each of the above four sets of Gvectors the appropriate ha-solutions have been taken 
into account, following from the full 27/32-plane wave basis set calculation. We have 
also calculated the transmission coefficient a, according to an approximation in which 
M’ = 1 and in which the periodic parts ut(r)  of the involved r-band Bloch solu- 
tions eit ‘uk(.) are taken to be constant (ut(.) E l), while the remaining envelope 
functions and their first derivative are assumed to be continuous at  the interfaces. 

The absolute values of the a,-coefficients for I = 1, as obtained for all these cases, 
are plotted in figure 10 as functions of energy. What is particularly striking is the 
large number of resonances in the transmission amplitude of the r-electron. These 
resonances are related to bound states of the X-electrons in the quantum well, formed 
by the X-valley band edges of GaAs and AIAs. Even more striking is the occurrence of 
anti-resonances (a very strong one lying at 0.38 eV), where the transmission amplitude 
drops to zero. Such results were already obtained earlier by KO and Inkson (1988). 
They have pointed out that these anti-resonances may be explained by the Fano the- 
ory (Fano 1961), which describes the behaviour of a resonance coupled to  a continuum 
of scattering modes. Clearly the correct a,-coefficient, as obtained by taking the full 
number of 13 Gvectors into account, is already obtained if only 9 G-vectors instead 
of 13 are taken into account. Also, 5 Gvectors already leads to very reasonable re- 
sults. This rapid convergence is due to the fact that the contribution of evanescent 
states with a relatively large imaginary part of k2 is relatively unimportant. These 
are the ones that  are accounted for if 9 Gvectors or more are used. Using only one 
Gvector  for the calculation of the a,-coefficient, fails drastically. This is due to the 
fact that  the u,(r)-functions can only reasonably well be represented by at least five 
2D Fourier coefficients. The envelope-function approximation (see the curve denoted 
by u(r)  = 1) clearly is not able to describe the resonances due to tunnelling through 
the X-valley in AIAs, but appears to be a reasonably good approximation for the back- 
ground tunnelling probability, due to tunnelling through the r-barrier. At energies 
below the X-minimum in AlAs the envelope-function approximation underestimates 
the transmission amplitude, but at energies close to the r-conduction band edge of 
AIAs it is a fairly good approximation to the exact transmission amplitude. 

The results for I = 0.3, for which AI,Gal-,As is a direct semiconductor, are 
given in figure 11. At 0.46 eV there is a small peak, which is due to  the first reso- 
nant tunnelling mode through the X-valley. It is obvious that using only 1 G-vector 
again fails, but that  using five Gvectors already leads to the correct result for the 
transmission amplitude. I t  is observed that the envelope-function approximation with 
ut(.) E 1 is very accurate. We remark that in this approximation the k2-values for 
the r-bands involved follow from our full EPhf bandstructure calculations. We have 
compared these results with three more types of envelope-function approximations. 
Firstly, we consider an envelope-function approach, in which there is supposed to  be 
one uniform effective mass for the GaAs and AI,Ga,-,As l’-bands throughout the 
whole structure, being the effective mass of GaAs (as obtained from the EPM calcu- 
lation). Only k,-values for these r-bands are considered. The Ic,-values follow from 
E = h2k;2/2m’ (q,, = 0), where m* is the effective mass (at le, ,= 0 )  as obtained from 
the EPM calculations. The envelope functions and their first derlvatives are continuous 
a t  the interface. Secondly, we have taken the approximation in which we used two such 
effective masses, one for each material, and where the envelope function and its first 
derivative are again taken to be continuous at  the interface. Note that this approxi- 
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Figure 10. The s b l u t e  "due of the amplitude nr of the transmitted r-electron 
through .an AMs barrier in a GaAs-crystal, calculated using 13,9,5 or 1 zn reciprocal 
lattice vectos G. Also the m e  in which the pefiodic part of the Bloch functiom U(?) 
is put equal to 1 is given. The (anti-)monant peaks are due to resonant tunnelling 
through the X-valley of AIAs. 

mation differs from our above uk(r)  = 1 approximation as the A,-values involved are 
determined differently. The third approach again uses two effective masses, but now 
the first derivative is discontinuous, the discontinuity being governed by the ratio of 
the effective masses. The results of these calculations are plotted in figure 12, together 
with our earlier 13 G-vectors result. All three approximations give reasonably good 
results for the transmission amplitude. That closest to the exact result is the third 
approach, which uses a discontinuity in the first derivative of the envelope function 
governed by the effective mass ratio. However, this latter result, which is at variance 
with the results in section 4.2 for I = 1 should not be overemphasized in the 2 = 0.3 
case, the reason being that the ratio of the effective masses is about 0.8 in this case, 
i.e. relatively close to 1. The relative success of the third approach therefore, can 
certainly not be interpreted as a general plea for a connection rule for derivatives of 
envelope functions involving effective mass ratios. 

6.  Discussion and concluding remarks 

In this paper we have treated the matching problem of the electronic wavefunction 
at a GaAs/AlAs interface, by carefully accounting for contributions of Bloch and 
evanescent states. We have done th is  in the framework of the flat-band approximation, 
on the basis of an empirical pseudopotential approach. I t  is shown that evanescent 
states with a large imaginary part of k, (Im(k,) > %/a) do not play a significant 
role in the matching problem. Solutions which have a real part of A,,  close to the 
X-point, which can be related to the minimum of the first and second conduction 
band at the X-point, however, do play a non-negligible role in the matching of the 
electronic wavefunction at the interface. Especially for energies near the minimum of 
the conduction band at the X-point, these X-states should therefore be accounted for 
in the calculations of electronic states in heterostructures. 
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Figure 12. The same BS figurr 11. but now calculated using envelope-function 
appraaches in which one (shortly dashed CUPM) or two (Long dashes) effective mses 
are u s 4  using continuous envelope functions and h t  derivatives. The approach in 
which the first derivative is discontinuous, govemed by the effective mass ratio, is 
denoted by the dotted cwve. Also the exact result (using 13 G-vectors) is given ( f a  
c u r 4  

Using the obtained wavefnnction we have calculated the corresponding envelope 
functions. These functions usually follow from Lijwdin renormalized envelope-function 
equations like, for instance, the widely used effective mass equation. But here we 
deduce them directly from the true wavefunction. It appears, for energies in the 
important conduction-band region, that only the conduction and lighehole band en- 
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velope functions are non-negligible. Both the conduction band and light-hole band 
envelope functions appear to be almost perfectly continuous at the interface, which is 
in accordance with connection rules for envelope functions as used in the literature. 
However, when regarding the first derivative of the envelope functions, we also find 
an approximate continuity for the first derivative of the conduction-band envelope 
function, which clearly contradicts the often applied mi,Ae/mi;,A,-rule. The first 
derivative of the light-hole envelope function is found not to  obey a simple connection 
rule; the ratio of this derivative in GaAs and AlAs appears to be strongly dependent 
on energy. We want to emphasize that we have checked afterwards that the obtained 
envelope functions and their first derivatives have indeed been constructed in such a 
way that the corresponding true wavefunction and first derivative are continuous a t  
every I, y-point of the interface. Of course the current density probability will then 
be continuous as well. Though it is tempting to state that the above deviation from 
the mXIAs/m&dirule will be a general result for all cases, we have to realise that 
this result is obtained for envelope functions as defined according to (21), i.e. related 
to the basis functions ~"*, (r)  of the respective sublayers j. We suggest that for this 
choice of envelope functions, the aboveobtained boundary conditions might very well 
be a general result, though more numerical evidence could be of help in settling this 
point. It should be realized, however, that the ambiguity in the choice of the basis 
functions makes the set of envelope functions ambiguous as well. Depending on the 
specific choice, the boundary conditions wiU, consequently, be different. It therefore 
remains to be investigated whether the above observed discrepancy with the generally 
applied milb/mi;ah-rule could be attributed to this ambiguity, or to an inherent 
weakness of the effective mass theory. 

A successful envelope function theory is always combined with Lowdin renormal- 
ization. In the light of this we have separated the envelope-function expansion of the 
electronic wavefunction for the heterojunction into two parts: one corresponding to 
envelope functions related to the r-valley and the other to envelope functions related 
to the X-valley. Each type of envelope function can then be approximately calculaled 
using more simple Lowdin renormalized envelope-function equations around the r- 
and X-point, respectively. We have verified whether such r-envelope functions of this 
separated kind satisfy simple connection rules or not. Again, it appears that both the 
conduction band and light-hole band r-type envelope functions are almost continuous 
at the interface, although the deviations from continuity are slightly larger than in the 
previous case. The first derivative of the Conduction band envelope function also obeys 
a simple connection rule, although the ratio between the first derivative in AlAs and 
GaAs now appears to be 1.26zk0.10. This is again not equal to the ratio of the effective 
masses of AlAs and GaAs. The Connection rule for the first derivative of the r-related 
light-hole envelope function has become even more dependent on energy. The above 
separation procedure is therefore not successful in leading to simpler connection rules. 

The empirical pseudopotential method has been applied to the tunnelling of an 
incident r-electron through an A1,Gal-,As barrier, with either z = 1 or e = 0.3, 
in a GaAs crystal. We have presented a numerical stable method for calculations 
to deal with this two-interface problem, also for very large barrier widths. The re- 
sult for the transmission probability of a l'-electron through an AlAs barrier shows 
strong resonant peaks, which are due to resonant transmission through bound states 
of X-electrons in the X-valley quantum well formed in the GaAs/AIAs/GaAs struc- 
ture. Apart from these resonances, strong anti-resonances are found, in which the 
transmission amplitude is lower than the background transmission amplitude, due to 
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tunnelling through the r-barrier. It can even drop to nearly zero. The calculations 
were shown to converge rapidly as a function of the number of zD reciprocal lattice 
vectors. This is undoubtedly of importance in future dculations on structures with 
multiple interfaces, like snperlattices, in view of both computing time and memory 
requirements. For the AI,,,Ga,,,As barrier the transmission probability is dominated 
by the tunnelling of r-electrons through the barrier. The X-type solutions appear to 
play a negligible role for the transmission probability. We have compared our EPhl ob- 
tained results for the transmission through the above two types of barrier (z = 1 and 
I = 0.3) with results obtained from simple envelope-function approximations. For the 
I = 1 case, the envelope-function approach fails for energies above the X-minimum 
in AIAs, due to the neglect of resonant tunnelling through X-states. Below this en- 
ergy the envelope-function approach is reasonable; it underestimates the transmission 
amplitude by about 15-20%. For the z = 0.3 case the r-hand transmission turns 
out to be reasonably well described by the envelope-function approaches throughout 
the whole energy range above the conduction band minimum in GaAs and below the 
r-minimum in AIAs. Calculations for heterostructures involving more than two in- 
terfaces, as well as the quantum well problem for hole states (for which spin-orbit 
interaction will be included) will be dealt with in a forthcoming paper. 
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Appendix. Number of k*-solutions 

We start by considering the 2N k,-solutions at given gii and energy E for the empty 
lattice case. The k,-solutions follow from 

or (with K,,, = G,,, + Gm,+e,) 

Clearly each G, component gives rise to a number of k,-values, two for each G,,,+- 
value. These G,,,-values are equidistantly distributed and count precisely the number 
of K,-vectors at given G,. A t  most one G,),-value will be given by gii + Re(k,)e, E 
1BZ. If such a k,-value exists we have in fact Identified a kz, either belonging to a true 
Bloch wave (k2 real) or a truly evanescent wave (k, complex), the other k, merely 
differing by a reciprocal lattice vector. The possibility also exists that no such k,-value 
exists at a given G,. In that case, it will always be possible, however, to reduce the 
members of the related set of vectors gii + k2ez to a vector gii + Gj + kze> E IBZ, where 
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Gi is one specific member of the set of two-dimensional reciprocal lattice vectors G,. 
This shows that the number of k,-values to be retained in the empty lattice case is 
indeed equal to twice the number of G,-vectors, which is 2M instead of 2 N .  We now 
argue on the basis of continuity, that the above result not only holds for the empty 
lattice case, but also for a finite potential case. Note that our result was previously 
obtained hy V Heine (1963). 

.I P Cuypers and W van Haeringen 
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